

Riyadh Global Digital Health Summit —— 11-12 August, 2020

Predicting Pandemics – Is the Technology Available Now?

Erik Volz

MRC Centre for Global Infectious Disease Analysis Department of Infectious Disease Epidemiology Imperial College London

Predicting Pandemics – Is the Technology Available Now?

The answer depends on what we mean by 'prediction'

- What is being predicted?
- Over what time horizon?

Prediction at different stages of the global pandemic

- Emergence –
 Global pandemic was highly predictable by mid-February
- Over the first wave The epidemic is more unpredictable now than they were in February

Life can only be understood backwards; but it must be lived forwards.

- Søren Kierkegaard

Imperial College London

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

What is Possible and what are the Limits of PM?

10,000,000

10

Mar Apr May Jun

Jul

Aug Sep Oct

Walker P, Whittaker C, Watson O et al. (2020).. https://doi.org/10.25561/77735

Nov

Dec Jan 21 Feb

Cori A, Ferguson NM, Fraser C, Cauchemez S. 2013. *American journal of epidemiology*. 178(9):1505–12

https://mrc-ide.github.io/covid19-short-term-forecasts/

https://viz.covid19forecasthub.org/

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

3

Prediction at Different Stages

Predicting pandemic emergence

Predicting global dissemination patterns

Short-term predictions (health-care demand)

Imai N, Dorigatti I, Cori A, Riley S, Ferguson NM. **Estimating the potential total number of novel Coronavirus (2019-nCoV) cases in Wuhan City, China.** Preprint published by the Imperial College London. 2020.

	Baseline ¹	catchment ¹	window ¹	6 exported cases	8 exported cases
Exported number of confirmed cases ²	7	7	7	6	8
Daily international passengers travelling out of Wuhan International Airport ³	3,301	3,301	3,301	3,301	3,301
Effective catchment population of Wuhan International Airport	19 million	11 million	19 million	19 million	19 million
Detection window (days)	10 days	10 days	8 days	10 days	10 days
Estimated total number of cases (95% CI)	4,000 (1,700 - 7,800)	2,300 (1,000 - 4,500)	5,000 (2,200 – 9,700)	3,400 (1,400 - 7,000)	4,600 (2,100 - 8,600)

E Volz, M Baguelin, S Bhatia et al. Phylogenetic analysis of SARS-CoV-2. Imperial College London; 15-02-2020. doi: https://doi.org/10.25561/77169.

International Travel, Passenger Screening, and Probability of Epidemic, and a Little Back-of-the-envelope Math

Wellcome Open Research; 15-06-2020, doi: https://doi.org/10.12688/wellcomeopenres.15805.1

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

Probability of sparking an epidemic outside China depends on the reproduction number

 $p_1 = e^{R_0(p_1 - 1)}$

... and on the number of undetected imported infections

 $p_1 = p(\text{no epidemic}|1 \text{ import})$

Prospects for Containment with Numerous International Exports

C Fraser, et al., PNAS, Apr 2004, 101 (16) 6146-6151; DOI:10.1073/pnas.0307506101

Costic, Katelyn, et al. "Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19." *Elife* 9 (2020): e55570.

Hellewell J,..., Russell TW, et al. Lancet Glob Health. 2020;8: e488–e496. doi:10.1016/S2214-109X(20)30074-7

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

If a Pandemic Occurs, what is the likely Pattern of International Dissemination

Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. Science. 2020;368: 395–400. doi:10.1126/science.aba9757

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

March/April 2020, a Pandemic is Underway:

Flaxman S, et al. Nature. 2020 https://doi.org/10.1038/s41586-020-2405-7, HJT Unwin, et al. Imperial College London; 21-05-2020, doi: <u>https://doi.org/10.25561/79231</u>

RIYADH GLOBAL DIGITAL HEALTH SUMMIT

http://sarscov2phylodynamics.org

Limits to Prediction: The Virus is a Moving Target

9

Predictive Modelling is not a Monolithic Methodology or a New Research Area. But a Rapidly Expanding Field.

- Google Scholar: Over 30,000 academic publications with COVID-19 in the title. Less than 2% indicate that they contain PM in the title. Nevertheless, nearly every business, hospital, city, state, and national government has been provided with COVID-19 forecasts.
 - PM encompass a wide variety of statistical and mathematical models applied to a diverse data to address different inference and prediction goals.

THANK YOU

